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Background
What constitutes good science remains a longstanding question in both philosophy and prac-
tice. Traditional peer review, for instance, has been critiqued for subjectivity, inconsistency, and
potential bias [1, 2]. Recent advances in large language models (LLMs) offer a novel opportu-
nity to re-examine this question at scale. While past approaches often relied on citation-based
metrics [4], we explore a bottom-up methodology that uses LLMs to generate and validate hy-
potheses about scientific quality—thereby shedding new light on how expert judgments might
form and evolve. Here, we analyze a dataset of approximately 27K papers submitted to 45
computer science conferences, paired on review scores to create clear distinctions in perceived
quality. Rather than manually defining the criteria of “good” science, we task LLMs with iter-
atively proposing, testing, and refining hypotheses that explain why one paper might be judged
as stronger than another. Throughout this abductive reasoning process, the LLM’s initial “nor-
mative” prior beliefs (e.g., a good paper has high novelty) are updated into a posterior that
reflects more professional-science criteria (e.g., a good paper tells a good story).

Dataset and Methods
We integrated data from OpenReview and data manually scrapped from PaperCopilot.com,
aligning submissions, reviewer scores, comments, and metadata, and formed pairs of papers
with substantially different review scores within the conference. We then prompted an LLM
to propose and test hypotheses explaining why one paper might appear stronger than the other
(e.g., “Paper 1 lacks rigorous justification of its contribution”).

Automated Hypotheses Generation (See Figure 1)- We begin by randomly sampling 50
paper pairs, prompting the LLM to propose 5 potential explanatory factors and testing each
via repeated queries and confidence-weighted voting in [3] (i.e., ”do you think this hypothesis
holds true among the pair of papers? Return your judgment and the confidence about your
judgment”). Any unexplained pairs become a “residual” set from which we sample another 50
pairs to generate 5 additional hypotheses, iterating until the unexplained cases are lower than
5%. This yields a final pool of 20 orthogonal hypotheses with high coverage of pairs.

Automated Hypotheses Evaluation We conducted two sets of experiments to explain these
hypotheses. The first is how the difference between two papers’ embedded representations
could explain the judgment. We computed embedding differences for each paper pair and
trained a Siamese neural network classifier, where two inputs share a neural network with the
same parameters and weights, to detect if the judgment could be predicted by the difference
in representations. We find while certain features (e.g., an elegant design) were captured well,
aspects such as “weak contextualization within the broader literature” proved harder to model
solely from textual embeddings. One possible reason is that these features not only require
papers’ own representations but also their related literature. The second set of experiments is
how much could we trust LLM’s judgment. We extract the feature from each hypothesis. We
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first use LLM to annotate each paper’s peer review comments regarding each feature with one of
three labels: ”good”, ”bad”, and ”not mention”. We then ask LLM to judge the paper regarding
the same set of features and retune one from three labels: ”good”, ”bad”, and ”neutral”. We will
focus on the annotated label overlap between human judgment and LLM’s judgment. Across
all experiments, we use the ”extended abstract” of the paper as shown in [5], which combines
summarizations of the context (related literature), key ideas, methods, results, and potential
future works.

Key Findings
We focus on how LLM’s beliefs about ”good science” are shifted during this iterative hypothe-
sis generation and evaluation process. We collected LLM’s prior, which is the set of hypotheses
and their appearance frequency across 2000 generations about what is good science but with-
out any data input. The posterior of LLM is their generated hypotheses and the proportion of
pairs that each hypothesis could explain. The LLM’s prior outputs often emphasized high-level,
normative ideals (e.g., novelty). Through iterative refinement, however, the criteria shifted to-
ward more professionalized norms, including storytelling (See Figure 2). LLMs could serve
as powerful tools for uncovering latent patterns in how experts judge scientific work. Never-
theless, challenges remain. Interpretability is a critical bottleneck: while the iterative process
yields human-understandable hypotheses, it relies on opaque LLM reasoning under the hood.
In addition, substantial progress is still needed in guiding LLMs and humans toward a clearer
understanding of what constitutes truly valuable science.

Figure 1: Automated Hypothesis Generation
Workflow Figure 2: Prior and Posterior Distribution
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